抽象化の先に待っているものが感じられるTED動画

20130705064427

小学校で学ぶ算数と、中学校以降に学ぶ数学。このふたつには大きな違いがあります。

よく「算数は普段使うから必要やけど、数学を普段使うことはない。やから必要ない」って意見を聞いたりしますが、「必要ない」という部分以外はまさにそのとおりだと思います。「算数は普段使うから必要やけど、数学を普段使うことはない」。だって、扱う対象が違うんですもの。

算数で扱うのは、”具体的”です。具体的な数を扱い、数に関する知識を学びながら、四則演算を習熟していきます。に対して数学で扱う対象は”抽象的”なもの。数学では「文字式」を筆頭に、普段の生活ではなかなか出てこない、抽象化された世界へと踏み込んで行きます。

だから「算数は普段使うから必要やけど、数学を普段使うことはない」んです。ただ、必要ないことは決してないですが。

抽象化してなんなのさ

じゃあ、抽象化していったいなんだというのでしょうか。

中学に入り、いきなり度肝を抜かれるのが、文字式だと思います。

それまでは500とか1.2とか具体的な数字を用いていたのに、なんだかxとかyとかが登場してきて、それで式を表現したりします。抽象化された世界への第一歩を踏み出すわけです。

算数の有名な問題で「鶴亀算」というのがあります。鶴と亀の数とその足の総数からそれぞれ何匹いるのかを求める問題です。

算数の世界ではあくまでも具体的な数を扱うので、まずは「すべて鶴であるとする」という仮定から始めての、総数を求めて行きます。それはそれで大切な考え方を学ぶことができるのですが、文字式を獲得したあとであれば、”方程式”という強力な武器が使えるようになります。こっちの方は鶴亀算のみならず、いろんな問題に応用可能です。

具体的な世界を離れる、ということは、応用範囲を広めることにつながります。

「ロバートラングが全く新しい時代の折り紙を折る」

抽象化することの恩恵がすごく感じられる動画が、TEDにあります。それが「ロバートラングが全く新しい時代の折り紙を折る」。

とにもかくにも動画を見て欲しいなと思います。「折り紙もすごいとこまできたもんだ」と感心すること請け合いです。

ロバート・ラングが全く新しい時代の折り紙を折る | Video on TED.com

今回注目して欲しいのは、折り方をコンピュータに計算してもらうことができるようになるまでの話の部分です。

そこでは、いろんな折り方のすべてに共通する要素を抜き出してしまうと、たった4つの法則にたどり着くことができる、ということが述べられています。

折り紙には古くから培われてきた、本当に様々な折り方ってのが存在します。これまでは一つ一つ折り方を編み出してきたわけですが、すべての折り方に共通する法則を抜き出すことで、折り方紙の世界はとたんに広がります。

簡単な骨組みを考えることで折り方をコンピュータにはじき出してもらうことができるようになったんですから。

具体物の一つ一つをから構成されていた折り紙の世界を、すべての折り方に共通している要素、”4つの法則”を抜き出すことで抽象化し、単純な要素のみで表現することで、しまいにはコンピュータに計算してもらえるようにしちゃったわけです。

コンピュータの技術がどんどん高まっている現在、こんな事例はこれからも出てくるのではないかなと思います。

おわりに

というわけで、TED動画「ロバートラングが全く新しい時代の折り紙を折る」を見ることで、抽象化の恩恵を感じ取れるのではないかなと思います。

抽象化するってのはとてもすごいことなんですけれども、抽象化されたら具体を離れるということで、目に見える対象ではなくなっちゃうんですよね。やっぱり普段の生活で扱うものは具体的なものばかりなんで、対象が抽象的なものである「数学」という学問は「別になくても困らないし、必要ないでしょ」って結論に至っちゃう人がとても多いんでしょうね。

でも、だからこそおもしろい面もあるわけで。そんなのをこれからも紹介できればなと思います。

では、お読みいただきありがとうございました。



20130703202511





Twitterボタン


Add to Google RSS